Current Issue : October - December Volume : 2013 Issue Number : 4 Articles : 4 Articles
Acquiring the snapshot of a distributed system helps gathering system related global state. In wireless sensor networks (WSNs), global state shows if a node is terminated or deadlock occurs along with many other situations which prevents a WSN from fully functioning. In this paper, we present a fully distributed snapshot acquisition algorithm adapted to tree topology wireless sensor networks (WSNs). Since snapshot acquisition is through control messages sent over highly lossy wireless channels and congested nodes, we enhanced the snapshot algorithm with a sink based reliability suit to achieve robustness. We analyzed the performance of the algorithm in terms of snapshot success ratio and response time in simulation and experimental small test bed environment. The results reveal that the proposed tailor made reliability model increases snapshot acquisition performance by a factor of seven and response time by a factor of two in a 30-node network. We have also shown that the proposed algorithm outperforms its counterparts in the specified network setting....
This work is about reducing energy consumption in the receiver chain by limiting the use of the equalizer. It is to make the radio receiver aware of its environment and able to take decision to turn on or off the equalizer according to its necessity or not. When the equalizer is off, the computational complexity is reduced and the rate of reduction depends on the percentage of time during which this component is disabled. In order to achieve this scenario of adapting the use of the equalizer, we need to develop a decision-making technique that provides the receiver with the capacities of awareness and adaptability to the state of its environment. For this, we improve a technique based on a statistical modeling of the environment by defining two metrics as channel quality indicators to evaluate the effect of the intersymbol interferences and the channel fading. The statistical modeling technique allows to take into account the impact of the uncertainties of the estimated metrics on the decision making....
In NDMA (network diversity multiple access), protocol-controlled retransmissions are used to create a virtual MIMO (multiple-input multiple-output) system, where collisions can be resolved via source separation. By using this retransmission diversity approach for collision resolution, NDMA is the family of random access protocols with the highest potential throughput. However, several issues remain open today in the modeling and design of this type of protocol, particularly in terms of dynamic stable performance and backlog delay. This paper attempts to partially fill this gap by proposing a Markov model for the study of the dynamic-stable performance of a symmetrical and non-blind NDMA protocol assisted by a multiple-antenna receiver. The model is useful in the study of stability aspects in terms of the backlog-user distribution and average backlog delay. It also allows for the investigation of the different states of the system and the transition probabilities between them. Unlike previous works, the proposed approach considers the imperfect estimation of the collision multiplicity, which is a crucial process to the performance of NDMA. The results suggest that NDMA improves not only the throughput performance over previous solutions, but also the average number of backlogged users, the average backlog delay and, in general, the stability of random access protocols. It is also shown that when multiuser detection conditions degrade, ALOHA-type backlog retransmission becomes relevant to the stable operation of NDMA....
The rise of wireless applications based on RFID has brought up major concerns on privacy. Indeed nowadays, when such an application is deployed, informed customers yearn for guarantees that their privacy will not be threatened. One formal way to perform this task is to assess the privacy level of the RFID application with a model. However, if the chosen model does not reflect the assumptions and requirements of the analyzed application, it may misevaluate its privacy level. Therefore, selecting the most appropriate model among all the existing ones is not an easy task. This paper investigates the eight most well-known RFID privacy models and thoroughly examines their advantages and drawbacks in three steps. Firstly, five RFID authentication protocols are analyzed with these models. This discloses a main worry: although these protocols intuitively ensure different privacy levels, no model is able to accurately distinguish them. Secondly, these models are grouped according to their features (e.g., tag corruption ability). This classification reveals the most appropriate candidate model(s) to be used for a privacy analysis when one of these features is especially required. Furthermore, it points out that none of the models are comprehensive. Hence, some combinations of features may not match any model. Finally, the privacy properties of the eight models are compared in order to provide an overall view of their relations. This part highlights that no model globally outclasses the other ones. Considering the required properties of an application, the thorough study provided in this paper aims to assist system designers to choose the best suited model....
Loading....